The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation.
نویسندگان
چکیده
The surface properties of biomaterials play a vital role in cell morphology and behaviors such as cell adhesion, migration, proliferation and differentiation. Three different crystal phases of titania film (rutile, anatase and amorphous titania) with similar roughness were successfully synthesized by DC reactive magnetron sputtering. The surface roughness of each film was about 8-10 nm. Primary rat osteoblasts were used to observe changes in morphology and to evaluate cell behavior at the film surface. The number of the osteoblasts on anatase film was significantly higher than rutile and amorphous films after 36 and 72 h incubation. More importantly, synthesis of alkaline phosphatase was significantly greater by osteoblasts cultured on anatase film than on rutile and amorphous films after 7 and 14 days. In addition, the cells grown on the anatase phase film had the largest spreading area; the actin filaments in cells with regular directions were well defined and fully spreaded. The results indicate that the anatase phase of titania with nanoscale topography yield the best biological effects for cell adhesion, spreading, proliferation and differentiation. There are strong therapeutic prospects for this biomaterial film for osteoblast proliferation, with possible applications for orthopedic and dental implant.
منابع مشابه
Sol-Gel Derived Titania Coating on Titanium Substrate
The synthesis of titania via sol-gel method has been widely studied. In the present work, titania was deposited onto a titanium substrat...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملThe effect of resistance training and date pollen extract on bone tissue density and osteoblast cell proliferation in young male rats
Extended Abstract 1.Introduction One of the tissues that is affected by physical activity is bone. Bone is one of the tissues that needs to receive mechanical load to have normal function as a key factor in strengthening bone mass (2). Evidence shows that the mechanical load resulting from physical activity activates a set of proteins involved in the process of osteoblast activation and inhib...
متن کاملCOMPARATIVE STUDY ON PROPERTIES OF NANOSTRUCTURED TITANIA SYNTHESIZED BY COLLOIDAL AND POLYMERIC SOLGEL ROUTES
Abstract:Nanostructured titania was synthesized by colloidal and polymeric sol-gel routes. Stable colloidal and polymeric titania sols were prepared by adjusting the proper values of the acid/alkoxide and the water/alkoxide molar ratios. The properties of sols were determined by dynamic light scattering technique and synthesized titania was characterized by thermogravimetry and differential the...
متن کاملVanadium Oxide Supported on Al-modified Titania Nanotubes for Oxidative Dehydrogenation of Propane
In this study, characterization of vanadia supported on Al-modified titania nanotubes (TiNTs) synthesized by the alkaline hydrothermal treatment of TiO2 powders has been reported. A promising catalyst for oxidative dehydrogenation (ODH) of propane was prepared via the incipient wetness impregnation method. The morphology and crystalline structure of TiNTs were characterized by transmission elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2008